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Abstract. We present an extension of the Tomonaga-Luttinger model in which left and right-moving par-
ticles have different Fermi velocities. We derive expressions for one-particle Green’s functions, momentum-
distributions, density of states, charge compressibility and conductivity as functions of both the velocity
difference ε and the strength of the interaction β. This allows us to identify a novel restricted region in the
parameter space in which the system keeps the main features of a Luttinger liquid but with an unusual
behavior of the density of states and the static charge compressibility κ. In particular κ diverges on the
boundary of the restricted region, indicating the occurrence of a phase transition.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.)

In the last years there has been much interest in the study
of one-dimensional (1D) condensed matter problems [1].
Specific examples of experimentally realized 1D structures
are: strongly anisotropic organic conductors [2], charge
transfer salts [3], quantum wires [4], edge states in a two-
dimensional (2D) electron system in the fractional quan-
tum Hall (FQH) regime [5] and the recently built carbon
nanotubes [6]. All these systems are no longer described
by the usual 3D-like Fermi liquid picture. They are be-
lieved to belong to a novel, highly correlated state of mat-
ter known as the Luttinger liquid (LL) [7]. Very recently,
possible LL behavior in 2D high temperature supercon-
ductors has also been reported [8].

From the theoretical point of view the most widely
studied 1D model is the so-called “g-ology” model [9],
which is known to display the LL behavior characterized
by spin-charge separation and by non-universal (interac-
tion dependent) power-law correlation functions. In par-
ticular it predicts a momentum distribution function that
vanishes at pF as n(p) ∼ (p − pF )2γ , where γ is related
to the strength of the electron-electron interaction (in the
free case one has γ = 0 and n(p) ∼ θ(pF + p)). One of the
simplest and yet very useful version of the “g-ology” model
is the exactly solvable Tomonaga-Luttinger (TL) model,
which describes left and right-moving electrons subjected
to forward-scattering interactions [10].

In this paper we propose a simple modification of the
TL model in which left and right-moving electrons have
different Fermi velocities vL and vR. Previous studies of
LL systems involving more than one Fermi velocity are re-
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lated to an special class of chiral LL [11] and to multiband
and multichain models [12]. Another interesting problem
in which one has different values for vF is the interac-
tion between parallel conductors leading to the so called
Coulomb drag [13]. We want to stress that the model we
shall study is crucially different from all these systems
since it is neither a purely chiral LL nor a multiband sys-
tem with symmetric dispersion. Our theory is formally
similar to a recently proposed model for the study of spin-
orbit coupling in interacting quasi-1D systems [14]. These
authors, however, concentrated their attention on the in-
terplay between velocity asymmetry and spin degrees of
freedom, whereas here we derive and analyze physical con-
sequences connected to the asymmetric dispersion only. As
we shall see, this point of view allows us to obtain some
novel non trivial features of the system.

To be specific we start by considering an asymmetric
dispersion described by the following Hamiltonian

H = −i�
∫

dx
(
vRψ

†
R∂xψR − vLψ

†
L∂xψL

)
+ πU

∫
dxψ†

R ψR ψ
†
L ψL, (1)

where ψR,L and ψ†
R,L are the electron operators and U

is the strength of the forward-scattering electron-electron
interaction. In the “g-ology” language we have g2 = π U
and g4 = 0. The extension of our results to the general
case (g4 �= 0) is straightforward, here we consider this
particular case in order to keep the discussion as clear as
possible. We will set � = 1 from now on. Please note that
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both vL and vR are positive, and U > 0 corresponds to
repulsive interactions. This is the case we shall examine
throughout this work.

Since the edge states of FQH systems have been suc-
cessfully described in terms of chiral fermions with drift
velocities proportional to E/B [5] (B is the uniform
transverse magnetic field and E is an electric field that
keeps electrons inside the sample [15]), the model above
could be experimentally realized by putting together the
edges of two FQH samples in the presence of different
fields such that the resulting fractions are also different.
In such experimental array U represents the strength of
the interaction between the charge-densities (CD) of each
fermionic branch. Recent experiments on tunneling be-
tween edge states of laterally separated quantum Hall ef-
fect systems [16] seems to indicate that the experiment we
propose is indeed feasible.

One interesting result of this paper is the appearance,
due to the velocity asymmetry, of a new available region
in the space of couplings in which the model (1) pre-
dicts an anisotropic phase, in the sense that the collective
charge-density modes associated to each branch propagate
in the same direction. However one has to be cautious
with this prediction since our computations show that (1)
is no longer valid in this region. Indeed, as we shall see, if
we define

v0 = (vR + vL)/2 (2)

and

ε =
vR − vL

vR + vL
, β = U/2v0, (3)

we can only trust our model inside the unit circle in the
ε − β parameter space (ε2 + β2 = 1). We then first ex-
plore the physics described by (1) in the restricted region.
We shall be specially interested in discussing the cases of
constant asymmetry (ε fixed) and constant interbranch in-
teraction (β fixed). In so doing we found a drastic change
in the behavior of the charge compressibility κ where the
value at zero asymmetry is multiplied by a factor which
diverges on the transition curve. Studied as a function of
β for fixed ε, it first reaches a minimum and then there is
a strong enhancement as β → β0 ≡ √

vRvL/v0, in oppo-
sition to the monotonous decay present in the ε = 0 case.
A similar change of behavior is present in the density of
states (DOS) function. For β and ε sufficiently small one
recovers an ordinary LL system (v0 → vF ,v− → −v+).

Outside the restricted region there is a change in the
sign of one of the “plasmon” velocities, accompanied by a
dramatic change in the behavior of the Green function for
that branch, which now diverges at long distances. This,
together with the fact that κ becomes negative, bring out
that the model suffers some kind of instability in this re-
gion. It is important to stress that this region is absent
for vR = vL.

We have studied the system (1) by using functional
bosonization techniques [17]. This amounts to defining
fermionic field operators in the Heisenberg picture. We
then have a field-theoretical, Lagrangian formulation of

the model. This, in turn, allowed us to obtain an action de-
scribing the dynamics of the bosonic collective excitations
of the system. Using this action one can easily compute
the dispersion relations for the CD oscillations. For short-
range, constant electron-electron potentials, these disper-
sions are linear, with velocities given by v± = v0η±, and

η± = ε±
√

1 − β2. (4)

From this equation one sees that the propagation of the
collective modes takes place for β < 1. It becomes appar-
ent that, in contrast to the usual answer for a TL model
with vR = vL and g4 = 0, here one has two different ve-
locities v+ and v− for the propagation of left and right
CD modes. Moreover, one of the velocities v+ or v− goes
to zero as the interaction and the asymmetry approach the
curve ε2 + β2 = 1 and changes its sign beyond that curve,
as anticipated above. If one keeps β fixed this change of
sign occurs for ε = ε0 ≡ √

1 − β2. At this point, as we will
see, there is a divergence in the charge compressibility and
in the DOS, which suggests that a phase transition takes
place.

Now, in order to get an insight into the physi-
cal consequences of the velocity difference, we compute
single-particle quantities: the Green function Gr(x, t) =〈
ψr(x, τ)ψ†

r(0, 0)
〉

τ→it
with r = + (R),− (L), the momen-

tum distribution function, the spectral function ρr(q, ω)
given by

ρr(q, ω) = − 1
π

ImG(ret)
r (q, ω), (5)

and the DOS defined as

N(ω) =
1
2π

∑
r

∫
dq ρr(q, ω). (6)

In these equations, G(ret)
r (q, ω) is the Fourier transform of

the retarded Green function:

G(ret)
r (x, t) = iθ(t)

〈{
ψr(x, t), ψ†

r(0, 0)
}〉 · (7)

For the normal phase (β2+ε2 < 1), the Green function
at T = 0 is given by

Gr(x, t) =
1

2πα

(
α

α− ir(x − vrt)

)γ+1

×
(

α

α+ ir(x − v−rt)

)γ

(8)

where α is an ultraviolet cutoff. The constant γ has the
usual expression in terms of the stiffness constant K, γ =
(K+K−1−2)/4, but in this constant vF must be replaced
by the average v0:

K =
√
v0 − U

v0 + U
=

√
1 − β

1 + β
· (9)
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In the outer region (β2 + ε2 > 1), for vR > vL, we get

GR(x, t) =
1
2π

[α− i(x − v−t)]
γ

[α− i(x− v+t)]
γ+1 (10)

and

GL(x, t) =
−1

2πα2

[α− i(x− v−t)]
γ+1

[α− i(x− v+t)]
γ · (11)

From these results one obtains a momentum distribu-
tion of the Fermi type for the right branch, i.e., nR(p) ∼
θ(p− pR). However, the situation is very different for nL.
Indeed, when taking the appropriate t → 0− limit in or-
der to employ the usual definition of nL(p), one finds that
the correlator increases linearly with distance, instead of
having the x−1 decay (typical of 3D-like systems) as is
the case for the right branch, or the x−(2γ+1) behavior
that yields the LL result in the “normal” LL region. This
leads to nL ∼ δ′(p + pL). The appearance of this diver-
gent (at long distances) left correlator, together with a
momentum distribution which is not a positive definite
quantity, are clear indications that the model given by (1)
is unphysical beyond β2 + ε2 = 1. (For vL > vR the cor-
responding left and right behaviors are exchanged.) We
then conclude that the model given by (1) yields sensible
results for ε2 + β2 < 1 and from now on we will restrict
our study to that region.

From equation (5) one can calculate the spectral func-
tion ρr(q, ω). We obtain, as in the symmetric case, only
one singularity in the positive frequency sector and one in
the negative sector, as expected for spinless systems. The
function diverges at those points as

ρr(q, ω) ∼ (ω − vrq)γ−1(ω − v−rq)γ

× [θ(ω − v−q)θ(ω − v+q) + θ(v−q − ω)θ(v+q − ω)].
(12)

The exponents do not depend on ε whereas the position
of the singularities does.

Concerning the DOS we get

N(ω) = N0(ω)
(

1 − ε2

ε20

)−1−γ

(13)

with

N0(ω) =
1
πv0

(ω/ω0)2γ

Γ (2γ + 1)(1 − β2)γ+1/2
, (14)

where ω0 = v0/α and Γ is the Gamma function. We see
that as the asymmetry is increased, the DOS grows from
its value at ε = 0, and diverges at the point ε = ε0.
We want to stress that in systems with several spec-
tral branches as multicomponent Tomonaga-Luttinger
model [1] and spin-polarized Luttinger liquids [18] a grow-
ing of the DOS as increasing the velocity difference be-
tween spectral branches is also observed. This disagrees
with the result obtained in the system with spin-orbit cou-
pling [14].

 
 

Fig. 1. Static charge compressibility as function of ε, for β =
0.1, 0.6, 0.9.

Using standard linear response theory one can express
the conductivity as an integral of the retarded current den-
sity correlation function. At this point one has to recall
that the naive definition of the current j = vRρR − vLρL

does not satisfy the continuity equation [19]. This choice
for j leads to a frequency-dependent conductivity that di-
verges on the unit circle ε2 +β2 = 1 and becomes negative
for ε2+β2 > 1. However, as shown in [19] it is indeed possi-
ble to build a physical current starting from the continuity
equation. Extending this procedure for the present ε �= 0
case we obtain jphys = (1 − β)(ρR − ρL) + v0ε(ρR + ρL).
Using this expression we were able to get the frequency-
dependent conductivity σ as:

σ(ω) =
v0 (1 − β)

π ω
, (15)

which is independent of ε.
Let us now consider the static charge compressibility

of this system, defined as κ = 〈(ρR + ρL)(ρR + ρL)〉 (q, ω)
for ω → 0. A straightforward computation yields

κ = κ0

(
1 − ε2

ε20

)−1

(16)

with

κ0 =
1

π v0 (1 + β)
, (17)

where one sees the divergence that takes place, at fixed β,
for ε = ε0. This is similar to the behavior of the DOS,
although both functions diverge with different exponents.
Note that beyond ε0 one obtains negative values for the
compressibility, a further indication that the model is not
valid in that region. In Figure 1 we show the dependence of
κ on ε for different values of β. We see that the asymmetry
enhances the compressibility. Of course, it is also possible
to study κ as function of the coupling β, for a fixed asym-
metry. This is depicted in Figure 2 where one sees that in
drastic departure from the symmetric case, which displays
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Fig. 2. Static charge compressibility as function of β, for
ε = 0.1, 0.6, 0.9.

decreasing κ for increasing β, now κ reaches a minimum
and then grows without bound as β → β0.

The critical behaviour of the static charge compress-
ibility and the DOS at ε0 together with the “freezing” of
one of the spectral branches (v+/− → 0) is an indication
that a phase transition involving CD degrees of freedom
takes place on the boundary β2 + ε2 = 1. A similar tran-
sition related to spin variables was also found in [14].

In summary, we have presented a simple modification
of the usual TL model, in which left and right-moving par-
ticles have different Fermi velocities. By using functional
bosonization methods we computed the dispersion rela-
tions of the underlying bosonic collective modes of the sys-
tem. We showed that the velocity asymmetry gives rise to
some remarkable features. We have found that the values
for the electron-electron coupling β and the asymmetry ε
are restricted to lie inside the circumference ε2 + β2 = 1
in order to guarantee the stability of the LL described
by (1). In this region, the DOS N(ω) and the static charge
compressibility κ display a big deviation from the stan-
dard LL behavior. For a fixed asymmetry one sees that
now κ reaches a minimum and then grows without bound
as β → β0. On the boundary of the restricted region the
velocity of one spectral branch goes to zero. Also κ and
DOS diverge when approaching this critical boundary, in-
dicating the appearance of a new phase.

To conclude we would like to stress that the idealized
model we present here could be approximately realized by
allowing the interaction between the edge states of two
FQH plates. Since the drift velocities of the correspond-
ing chiral LL’s are proportional to E/B, one could have
vR �= vL by conveniently tuning up the corresponding val-
ues of these fractions.
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